Search results for " Variational inequality"

showing 5 items of 5 documents

Holder continuity of solutions for a class of nonlinear elliptic variational inequalities of high order

2001

Variational inequalityWeight functionClass (set theory)Quarter periodHigher-order equationApplied MathematicsMathematical analysisNonlinear degenerate elliptic equation Higher-order equation Variational inequality Weight function;Hölder conditionNonlinear degenerate elliptic equationJacobi elliptic functionsNonlinear systemWeight functionElliptic partial differential equationVariational inequalityAnalysisMathematics
researchProduct

A simulation function approach for best proximity point and variational inequality problems

2017

We study sufficient conditions for existence of solutions to the global optimization problem min(x is an element of A) d(x, fx), where A, B are nonempty subsets of a metric space (X, d) and f : A -> B belongs to the class of proximal simulative contraction mappings. Our results unify, improve and generalize various comparable results in the existing literature on this topic. As an application of the obtained theorems, we give some solvability theorems of a variational inequality problem.

best proximity point fixed point simulation functions variational inequality problemsNumerical AnalysisControl and OptimizationAlgebra and Number Theory010102 general mathematicsMathematical analysisFunction (mathematics)01 natural sciences010101 applied mathematicsSettore MAT/05 - Analisi MatematicaVariational inequalityProximity problemsDiscrete Mathematics and CombinatoricsApplied mathematicsPoint (geometry)0101 mathematicsAnalysisMathematicsMiskolc Mathematical Notes
researchProduct

Fixed point iterative schemes for variational inequality problems

2018

In a wide class of evolutionary processes, the problem of computing the solutions of an initial value problem is encountered. Here, we consider projected dynamical systems in the sense of \cite{Daniele} and references therein. Precisely, a projected dynamical system is an operator which solves the initial value problem: \begin{equation}\label{PDS}\frac{dx(t)}{dt}= \Pi_{\mathbb{K}}\left(x(t),-F(x(t))\right), \quad x(0)=x_0 \in \mathbb{K}, \, t \in [0,+\infty[,\tag{P}\end{equation} where $\mathbb{K}$ is a convex polyhedral set in $\mathbb{R}^n$, $F: \mathbb{K} \to \mathbb{R}^n$ and $\Pi_{\mathbb{K}}: \mathbb{R} \times \mathbb{K} \to \mathbb{R}^n$ is given as follows $\Pi_{\mathbb{K}}(x,-F(x))…

Krasnoselskij-type iterative schemeSettore MAT/08 - Analisi NumericaVariational inequality problemSettore MAT/05 - Analisi MatematicaHilbert spaceHilbert space Krasnoselskij-type iterative scheme Projected dynamical system Projection operator Variational inequality problemProjection operatorProjected dynamical system
researchProduct

A differential equation approach to implicit sweeping processes

2019

International audience; In this paper, we study an implicit version of the sweeping process. Based on methods of convex analysis, we prove the equivalence of the implicit sweeping process with a differential equation, which enables us to show the existence and uniqueness of the solution to the implicit sweeping process in a very general framework. Moreover, this equivalence allows us to give a characterization of nonsmooth Lyapunov pairs and invariance for implicit sweeping processes. The results of the paper are illustrated with two applications to quasistatic evolution variational inequalities and electrical circuits.

Lyapunov functionDifferential equation01 natural scienceslaw.inventionsymbols.namesakeEvolution variational inequalitylawApplied mathematicsUniqueness0101 mathematicsEquivalence (formal languages)[MATH]Mathematics [math]MathematicsConvex analysisApplied Mathematics010102 general mathematicsNonsmooth Lyapunov pairs010101 applied mathematicsregularizationMSC: 49J40 47J20 47J22 34G25 58E35 37L45Electrical networkVariational inequalitysymbolsMoreau's sweeping processAnalysisQuasistatic process
researchProduct

A compliant visco-plastic particle contact model based on differential variational inequalities

2013

This work describes an approach to simulate contacts between threedimensional shapes with compliance and damping using the framework of the differential variational inequality theory. Within the context of nonsmooth dynamics, we introduce an extension to the classical set-valued model for frictional contacts between rigid bodies, allowing contacts to experience local compliance, viscosity, and plasticization. Different types of yield surfaces can be defined for various types of contact, a versatile approach that contains the classic dry Coulomb friction as a special case. The resulting problem is a differential variational inequality that can be solved, at each integration time step, as a v…

Work (thermodynamics)Applied MathematicsMechanical EngineeringMathematical analysisConvex setContext (language use)Classical mechanicsMechanics of MaterialsViscosity (programming)Variational inequalityDifferential variational inequalitySpecial caseDifferential (mathematics)MathematicsInternational Journal of Non-Linear Mechanics
researchProduct